
Real-Time Adaptive Strategies for StarCraft:

BroodWars

Lucas Silva

Instituto Superior Técnico

Abstract. In this document we introduce the idea of an adaptive strategy

for the StarCraft: BroodWars test bed. The motivation behind such

strategy is that only one agent has yet been capable of playing and

defeating a professional level player and most of the existing agents have

non-adaptive strategic components. This lack of adaptability renders

agents unable to react effectively to certain unforeseen strategies that

a human can quickly come up with just by observing and exploiting

these limitations. The proposed architecture will behave in a way that it

can adapt to any of these situations without the need of coding specific

strategies. We will also discuss the results obtained by applying this

adaptive strategy and how to further improve its efficiency.

Keywords: StarCraft; Adaptive; Real-Time Strategy; Macro-management; Ge-
netic Algorithm.

1 Introduction

Starcraft is a real-time strategy based game (RTS) released by Blizzard En-
tertainment in 1998. The game consists of a fog-of-war state in which the only
objective is to destroy the enemies’ units and buildings. To achieve this, we are
given a choice between three races that can, in total, build x units and y build-
ings while managing and gathering resources to build said units and buildings
of our own. The game popularity and professionalization (Starcraft became a
professional electronic sport in 1999) led to the creation of standard text book
strategies widely used throughout the community.

In 2017 Blizzard Entertainment released and API for Starcraft 2, the latest
game in the franchise, and earlier this year Google’s DeepMind released AlphaStar,
the first bot to ever defeat a professional human player in any game of the franchise
[6]. AlphaStar uses a deep neural network that is trained directly from raw game
data through the use of supervised and reinforcement learning as a base start.
The bot was later trained against multiple instances of itself in a competition
ladder faction (in order to improve even further) until it was able to beat Team
Liquid’s Grzegorz "MaNa" Komincz, one of the world’s strongest professional
Starcraft 2 players, five matches to zero, in December 19, 2018 .



2 Lucas Silva

1.1 Problem Definition

It is easier for a bot than a human to micromanage units, as bots can easily
control single units individually, even in large armies, making their efficiency a lot
higher in battles. As such, macro-management is the aspect of the game in which
human players best bots. Although there are several “text book” strategies, they
are not very flexible when strictly applied, even when a bot changes between
several of these strategies, they may not be well adjusted to the current enemy
strategy, thus having low efficiency. Being able to adapt in reaction to the enemy
strategy is the greatest advantage human players have against bots, which makes
the use of algorithms that create adaptive strategies a step towards closing this
gap.

With this in consideration, this thesis addresses the problem of how to create
an adaptive model for strategy generation in Starcraft that is able to counter an
opponent’s strategy.

1.2 Hypothesis

Due to macro-management being the main advantage point human players
have against bots, in this paper it’s proposed an adaptive strategy module for
Starcraft’s bots, that uses as its core, a genetic algorithm. The main purpose of
said algorithm is to be able to create its own strategies while maximizing unit
advantage and minimizing the resources spent. For this to happen, the bot scouts
the enemy base location and army in order to be able to adapt to the enemy
current strategy.

Being easy to implement and adaptable to other games and/or purposes, a
genetic algorithm was chosen to implement the proposed algorithm as it can
quickly provide results, proving the validity of the hypothesis.

2 State of the Art

This section’s main focus is to provide detailed information over the Starcraft

competition, as well as the current researches developed for this environment.
It also details the current uses of some algorithms and their strengths and
weaknesses.

2.1 Genetic Algorithm

Genetic algorithms (GA)[7, p. 619] are adaptive heuristic searches that make
use of a set o methodologies inspired by biological natural selection methods
greatly used to solve optimization problems. Genetic algorithms make use of
biological mechanisms to generate better offspring’s, enclosing optimal solutions.

These mechanisms can be defined, in this context, as the following:



Real-Time Adaptive Strategies for StarCraft: BroodWars 3

· Selection - The process of selecting the fittest individuals among the popula-
tion;

· Reproduction - Generating an individual consisting of the mix between two
previously selected ones, with random partitions of said individuals;

· Mutation - Randomly introducing alterations on the individual, based on a
probability;

· Recombination - Basically the same as reproduction, but with fixed partitions
of the individuals.

The GA’s simulate a survival of the fittest natural selection over consecutive
generation of individuals, where each of these individuals represent a possible
solution and a point in the search space that will then suffer from the biological
mechanisms introduced above, generating fitter and fitter offspring, tending to
better solutions.

These algorithms usually begin by randomly generating a population of
individuals that will be scored according to a fitness function. From this population
the highest scored individuals are selected for reproduction and will then be
submitted to mutation and recombination. This process is then repeated until
the terminating conditions are met, usually a time limit, number of generations
produced or a sufficient score is achieved. Although some conditions and weights,
or even mechanisms utilized may vary from different implementations in genetic
algorithms, they all follow this general description.

This kind of approach is widely used in the generation of autonomous agents in
a wide range of different applications, one of which is in real-time strategy games,
and has shown great results, especially when conducted in coarser granularities
(using macro actions)[10].

Although having a wide range of applications, genetic algorithms usually suffer
from a single type of problem. The most difficult aspect when applying a genetic
algorithm to a problem is defining what kind fitness function to use, how long the
algorithm will run for, the size of the population, the probability of mutations
and selection and how to define the parameters, in summary, subjectivity, as
these values are problem specific and cannot be reused from different problems
and implementations.

2.2 Build Order Optimization

One of the main differences in turn-based to real-time strategy games is time
itself. In real-time strategy the game state changes, even though a player has taken
no action whatsoever, while in turn-based strategy the game states only changes
because one of the players performed an action. This makes it so that resource
gathering and allocation are important components when applying strategies in
Starcraft, as a efficient resource management can speed up the players response
time, possibly changing the tide of a match. In order to address this issue, Michael
Buro and David Churchill proposed a build order optimization algorithm[4].

The proposed algorithm, given an objective strategy (which units and buildings
the bot intends to build), will return an array of units and buildings that the



4 Lucas Silva

bot will follow to better allocate its resources and quickly achieve its objective.
This algorithm uses a depth-first branch and bound search from a starting state
S until it satisfies a goal G. In order to make this algorithm implementation
possible, three key features were built in:

· Action Legality Check - This feature ensures that a child node of any given
state can only be generated if the action required for this state to be achieved
would be valid;

· Fast-Forwarding Simulation -This feature’s purpose is to ignore null-actions,
greatly reducing the search span, by simulating the state the game would
be in if null actions are taken, assuming the resources, buildings and units
constructed as if they were gathered/built instantaneously;

· Macro Actions - Grouping actions in macro action will reduce the search
span while also guaranteeing that known effective set of actions are always
taken as a singular action;

Result analysis on this approach show that the build orders produced are
comparable to that of professional Starcraft players, being able to defeat non-
trivial opponents.

2.3 Strategy Prediction

One of the main advantages human players have against bots is the ability to
predict strategies. As simple as this advantage may seem, experienced players,
are able to recognize and adapt, early in the game, to an opponents strategy,
simply by scouting the enemies units and buildings. Having this in consideration,
Henrik Sørensen and Johannes Garm Nielsen proposed a prediction algorithm
for Starcraft[9].

This algorithm consists of a multi-layer perceptron based system that uses
replay analyses as a training data pool, with a resilient propagation algorithm
used to train the strategy prediction. Result analysis shows great improvements
when comparing this algorithm to the statistically best guess.

Strategy Prediction algorithms, such as this one, work great when paired with
automated strategy generation algorithms, as the one proposed in this document,
making it so that a bot can respond to the opponent’s goal strategy rather than
the current one.

2.4 Toward Automatic Strategy Generation

In order to demonstrate the viability of bots adaptability for Starcraft, Pablo
García-Sánchez et al[5] conducted a study by creating a genetic algorithm and
using two different fitness functions. These two fitness functions consist of distinct
ways to measure the reliability of its agent performance. One of the fitness
functions followed a victory based approach, while the other followed a report
based approach and both were later compared, after playing several matches
against bots with hand-coded text-book strategies.



Real-Time Adaptive Strategies for StarCraft: BroodWars 5

The victory based function consists of using the final score returned by
StarCraft at the end of each match held, and the report based function is a more
complex one, separating military and economic development. Although focusing
only on the strategical part of the game, these bots managed to achieve good
results against fully coded bots with hand-coded strategies.

Result analysis in this paper showed that, although only focusing on the
strategical aspect of the game, the victory based approach was capable of beating
complex non-adaptive agents with different sets of strategies.

3 Methodology

The central concept in this paper is the idea of having a bot use an algorithm
that is able to generate, in run-time, reliable strategies in order to gain advantage
over its opponents. The following subsections detail the different components of
the algorithm proposed, and figure 1 shows how they intertwine and communicate.

Fig. 1: Data treatment and algorithm structure.

3.1 Algorithm Overview

The algorithm takes into account the enemy race and units built in order to score
the units it can produce. The better a unit is against the opponents, the higher
its score. The genetic algorithm will then calculate which units should be built
and how big should the army be, so that it can gain advantage over the enemy
army, while minimizing the cost of production.



6 Lucas Silva

3.2 Data Treatment

As the first enemy unit is seen, the algorithm stores data about which race the
opponent is using, initializing the unit and cost maps as well as the counter
multi-map. The unit map is responsible for literally mapping the possible units
the bot can produce into integers, facilitating the information treatment. The cost
map stores the production cost of each unit the bot can produce. The counter
multi-map, stores information about the relationship between the units the bot
can produce and the units the enemy can produce, keeping track of which units
are strong, or weak, versus which.

The algorithm will then calculate a counter value for each of the units the
bot can produce, this value represents how well the unit type would fare versus
the opponent current units. These values are then mapped to each unit, storing
only the units with non-negative counter values are stored, along with their
corresponding value, on the counter map. Figure 1 shows how these structures
link to one another.

3.3 Fitness

As a way to minimize the production cost while maximizing units efficiency, the
fitness function was created as a simple subtraction between the total counter
value of each unit in an individual from the genetic algorithm’s population, and
its production cost. In order to achieve this, a division, instead of a subtraction,
could be used. The reason behind a subtraction was used, instead of a division
is because, the division version of the fitness (x/y) is a non-linear function.
Non-linear functions are a lot more complex to compute than linear functions
and since the genetic algorithm proposed is used in run-time, several times per
match, and the fitness value for each individual is calculated in every generation
in a single run of the algorithm, there is a significant impact on the time the
algorithm would take to run. Figures ?? and ?? show the graph generated by
the non-linear (x/y) and linear (x − y) functions, respectively.

To calculate the counters value (Counter(individual[i])) it is only needed to
sum each unit counter value, stored in the counter map (1), from each unit in
the current individual being evaluated in the fitness function.

Similar to the way the counter value is calculated, the cost value (Cost(individual[i]))
is also calculated as a sum. The difference between the two variables being that
the cost value is calculated using the cost map (1).

Cost(individual[i]) =
individual.size()∑

n=0
CostMap(individual[i],gene[n]) (1)

As the cost and counter values have different orders of magnitude, the cost
value is normalized according to following function:

normalization = individual.size() × enemyUnits.size()
MaxCost(race)

(2)



Real-Time Adaptive Strategies for StarCraft: BroodWars 7

Situationally, in a Starcraft match, fast unit production may be more valued
than a few strong units that can be overwhelmed by numbers. As measure
against, this algorithm assigns weights to the cost and counter values in the
fitness function. The weight value is mutable, depending on the enemy army size
and is calculated as shown in the following function.

After normalizing the counter and cost values, since they are independent
from one another and both range from zero to maxCounter, it would be possible
for the fitness of a given individual to be a negative value. Some of the genetic
algorithms mechanisms, namely the proportional roulette wheel selection algo-
rithm, struggles with negative fitness values. As a measure avoid this problem, a
constant maxCounter is added to the fitness value of every individual, and is
calculated once for every run of the genetic algorithm.

maxCounter = individual.size() × enemyUnits.size() (3)

Fitness(individual[i]) =
maxCounter + (Counter(individual[i]) × weight)
−
(Cost(individual[i]) × (1 − weight) × normalization)

(4)

3.4 Algorithm Configuration

To maximize the effectiveness of the genetic algorithm, several configurations
were tested, using varying inputs, so that the best configuration for this specific
problem could be found.

Initially the algorithm used two stopping conditions, a maximum number
of generations, set at two hundred, and a verification that if the best solution
was the close to the previous best solution, the algorithm would stop. Firstly, it
was verified that in order to avoid local maximums the second stop condition
had to be ignored, and so it was removed from the algorithm. As for the first
stop condition, empirical results showed that there was little to no difference in
running the algorithm for one hundred, or two hundred generations, and since
this algorithm is used at runtime, the faster solution was chosen.

In a Starcraft: Broodwars match, two hundred is the limit to the number of
units a player can have at a time and as such, each individual is represented by
a vector of two hundred units. Although this is true, when defining which units
to build to gain strategic advantage, defining two hundred units as a counter
strategy is not viable. In order to go around this problem, the individuals in a
population having varying size, depending on the size of the enemy army (units
that swarm are considered in double), this way we can ensure that the bot will
not overproduce units, nor overspend resources.

As a way to ensure the best solution was kept, the elitism mechanism was
used, making sure the best result would continue on to the next generation of the
algorithm. The genetic algorithm also uses the two-point crossover algorithm as



8 Lucas Silva

a method for the individuals recombination, as it offered a higher flexibility and
better results when tested against other methods for the recombination purpose.

The selection and mutation algorithms were used in such a way that they would
let the genetic algorithm avoid local maximums. To do so, the mutation mechanism
would change a random chromosome in an individual genome with a given
probability. This probability would be higher in early generations (maximizing
diversity) and lower in later generations (converging faster in order to achieve
the best possible result). The selection algorithm chosen was the roulette wheel
selection. Yet again this was done based on empirical testing, comparing several
configurations for this genetic algorithm. The only exception to this was the
mutation algorithm. The non-uniform mutation algorithm was chosen simply
because it was easier to work with given the individual data representation as
integers.

Instead of testing each possible algorithm singularly, different possible algo-
rithm configurations were tested instead, using three sets of inputs, ten times each,
for any of the possible configurations. The obtained fitness and the time spent in
each test was taken in consideration when choosing the best configuration for the
algorithm. The proportional roulette wheel selection with the two points crossover
algorithm was the configuration that achieved the best results regarding the time
spent and fitness values, justifying the genetic algorithm’s current configuration.

4 Results and Discussion

In this section, we analyze the results of applying the proposed algorithm to
UAlbertaBot. The results here discussed were obtained through several matches
against bots using different races and opening build orders. Test results stored
information on the algorithm run time, how many times it ran during a single
match, and how good was the strategy resulting from the algorithm’s output.

4.1 Results

Throughout the matches it was verified that the algorithm ran every time a
change was detected in the enemy units, corresponding to the objective regarding
this aspect.

The most challenging aspect to test, was the algorithm’s output. Military
victory does not necessarily mean that the army had an advantage over the
opponent. Depending on the bot’s efficiency in micromanaging units, or how fast
it can produce them, a battle outcome can be unforeseen. Because of this, unit
by unit analysis was done to every output of the algorithm throughout every
match done during the tests and it was verified that the algorithm prioritized a
mix of units with low cost of production and efficiency versus the enemy units
(good counters), depending on the situation, as intended.

Although the algorithm objectives were achieved, when playing against other
bots, the match results were not as good as intended, and the reasons why this
happened are discussed below.



Real-Time Adaptive Strategies for StarCraft: BroodWars 9

4.2 Discussion

Match results against other bots showed that, although the algorithms worked
as intended, there is a long way before the bot can play in an efficient manner.
Matches against UAlbertaBot’s base version, with the Zerg race, in a mirror
match-up, had a one hundred per cent win rate, but if UAlbertaBot was to
play any other race the bot would struggle. After analyzing each match, it was
observed that, while playing the Zerg, UAlbertaBot, and by extension, our bot,
had some worker management issues, translating in a delay in the bot’s ability
to respond in time to incoming threats. Contrary to when using the Zerg, the
Protoss race, the bot’s original choice of race to play with, won every match-up,
except for the mirror match-up.

UAlbertaBot would also struggle when different kinds of resources were needed
in order to produce units and buildings, regardless of the race being played. The
bot would assign too many workers to a single resource and very few to the other.
This lead to a halt in production of units that need the neglected resource to be
produced.

Another aspect that hindered the obtained match results, was the fact that
every time the algorithm changed the objective strategy UAlbertaBot would
prioritize producing units with higher production cost, instead of units it could
already produce. This meant that units lost in combat were not being replenished
fast enough, rendering the bot unable to defend.

With all this behavioural divergences between UAlbertaBot and how the
proposed algorithm intended it to react, a conclusion was reached in which
UAlbertaBot is too incompatible with the proposed algorithm for it to translate
into positive match results.

5 Conclusion

The tests scenarios could be subdivided into two different groups. In first group
both agents suffered from the same handicaps (lack of a proper resource gathering
and worker management). In this scenario, corresponding to the Zerg vs Zerg

and Protoss vs Zerg match-ups, the agent was able to achieve victory in every
single match.

In the last scenario, however, the agent was mainly defeated even though that
the algorithm here proposed behaved as intended. In this scenario, it was verified
that the agent tested had a handicap when it comes to resource gathering and
worker management, while the opponent behaved normally, with no handicaps.
This happened because in Starcraft every decision has a weight on the match
outcome and the improvement of a single aspect cannot show significant differences
if the other aspects of an agent are lacking. Although this may be truth, the
single aspect that most contributed to the negative game outcomes in some
scenarios, was that the original agent was created with some specific strategies in
mind. This resulted in an incompatibility between the way the units are managed
and prioritized, and how the algorithm proposed expected them to work. This



10 Lucas Silva

incompatibility resulted in faulty resource gathering. Instead of spreading workers
according the resources needed the most, the workers were assigned in a fixed
manner, and a faulty prioritization when deciding which units to build first after
a change in its strategy, as the agent would focus on the most expensive units
instead of the cheaper ones, limiting the agent’s ability to quickly respond to the
opponent.

As so, to fully seize the capabilities of the algorithm presented, we intended
to upgrade the current agent and fix some of its existing issues.

5.1 Future Work

Although the algorithm achieved good results, in order for it to be the most
effective it can be, a few improvements can be implemented. The algorithm
implemented gives information about which units should be built to gain military
advantage, but another algorithm can be implemented to determine when and
how many defensive buildings should be built, or even how many copies of
strategic buildings should be used.

Another aspect that can be improved is the need to upgrade technologies in
order to make the best use of the units built so far.

Lastly a prediction algorithm can be implemented. It would feed information
to the algorithm here presented so that its response would be faster and always
one step ahead of the opponent. Based on the enemy units, their buildings and
our own units, said algorithm could predict the enemy response. This would
allow for the algorithm presented to react to the strategy the enemy is going for,
instead of seeing it first and then reacting.

References

1. Bellemare, M.G., Ostrovski, G., Guez, A., Thomas, P.S.: Increasing the Action Gap

: New Operators for Reinforcement Learning (2012)

2. Bishop, C.M.C.C.M.: Pattern recognition and machine learning. Pattern Recognition

4(4), 738 (2006)

3. Churchill, D.: UAlbertaBot (2011)

4. Churchill, D., Buro, M.: Build Order Optimization in StarCraft pp. 14–19 (2007)

5. Cig, I.: 2015 IEEE Conference on Computational Intelligence and Games (2015)

6. Google’s DeepMind: AlphaStar, https://deepmind.com/blog/alphastar-mastering-
real-time-strategy-game-starcraft-ii/

7. J. Russell, S., Norvig, P.: Artificial Intelligence: A modern approach (1995)

8. Nguyen, K.: Potential flows for controlling scout units in StarCraft. The Proceedings

of the IEEE Conference on Computational Intelligence in Games 2012(Sscai 2012),

344 –350 (2013)

9. Nielsen, J.G.: Strategy Prediction in StarCraft : Brood War using Multilayer

Perceptrons. Strategy (2011)

10. Samothrakis, S., Roberts, S.A., Perez, D., Lucas, S.M.: Rolling Horizon methods

for Games with Continuous States and Actions (2014)

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

